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1 Kernel: its dimension and basis

Last lecture we saw that the kernel of a linear function is a vector space. Each vector space

has a dimension and basis — this lecture we’ll try to determine them for the kernel.

Let f : V → U be a linear function, V and U are vector spaces, dim V = n, and dim U = m.

We saw that for any linear function we can determine its matrix. So, for f there exists m× n-

matrix A

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . . . . . . .

am1 am2 . . . amn




such that for any vector x ∈ V

f(x) = Ax,

i.e. if x is a vector such that x = (x1, x2, . . . , xn), then

f(x) = Ax =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . . . . . . .

am1 am2 . . . amn







x1

x2

...

xn




By definition, vector x belongs to the kernel of f if and only if f(x) = 0. But since f(x) = Ax,

then this condition can be written as

f(x) = 0 ⇐⇒ Ax = 0 ⇐⇒




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . . . . . . .

am1 am2 . . . amn







x1

x2

...

xn




=




0

0
...

0




So, the last matrix equality can be written as a linear system




a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = 0
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This is a homogeneous system, and we got that its solution space is the kernel of f . We already

know how to get a dimension and basis of the solution set for any homogeneous system. The

dimension of it will be equal to the number of free variables in REF, and to find a basis we

have to solve it, and get particular solutions by assigning 1 to the first free variable and 0’s

to the other, then 1 to the second free variable and 0’s to the other, etc. These solutions will

constitute a basis of the solution space.

Example 1.1. Let fR4 → R3 be a linear function such that

f(x, y, z, u) = (x + 2y − z + u, 2x + y + z + u, 4x + 5y − z + 3u).

We can write the system for kernel:





x + 2y − z + u = 0

2x + y + z + u = 0

4x + 5y − z + 3u = 0

Let’s transpose it to REF:





x + 2y − z + u = 0

2x + y + z + u = 0

4x + 5y − z + 3u = 0

Ã





x + 2y − z + u = 0

− 3y + 3z − u = 0

− 3y + 3z − u = 0

Ã

{
x + 2y − z + u = 0

− 3y + 3z − u = 0

Here we have 2 free variables, so the dimension of the Ker f is equal to 2. To find the basis

of it we need to find 2 particular solutions of it. Free variables are z and u. So, first, assign

z = 1 and u = 0. We get: y = 1 and x = −2y + z − u = −2 + 1 = −1. So, the first solution

is (x, y, z, u) = (−1, 1, 1, 0). Second, assign z = 0 and u = 1. We get: y = −1/3, and

x = −2y+z−u = 2/3−1 = −1/3. So, the second solution is (x, y, z, u) = (−1/3, −1/3, 0, 1).

So, the basis of the kernel consists of the following 2 vectors:

e1 = (−1, 1, 1, 0)

e2 = (−1/3, −1/3, 0, 1).

Now we’ll develop a theory about the dimension of the kernel. Let consider the m × n

matrix in the REF. We see that the variable can be either leading or free. So, since the total

number of variables is equal to n, we have the following:

# free variables + # leading variables = n.
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Number of leading variables is equal to the rank of a matrix (since each leading variable corre-

sponds to one nonzero row in REF of a matrix), and the number of free variables as we saw is

equal to the dimension of the kernel of f . So, we get the following lemma:

Lemma 1.2. If f : V → U is a linear function with matrix A, and dim V = n, then

dim Ker f + rk A = n.

2 Image: its dimension and basis

Last lecture we saw that if for a linear function f : V → U we know f(e1), f(e2), . . . , f(en),

(e1, e2, . . . , en is a basis of V ) then we can determine f(v) for any vector v ∈ V . I.e., if

v = a1e1 + a2e2 + · · ·+ anen,

then

f(v) = a1f(e1) + a2f(e2) + · · ·+ anf(en).

So, vectors f(e1), f(e2), . . . , f(en) span the image of f . Thus, the problem of finding the

dimension and the basis of the image reduces to the problem of finding the dimension and the

basis of the span of f(e1), f(e2), . . . , f(en). We already know how to solve this problem: we

write vectors f(e1), f(e2), . . . , f(en) as rows of a matrix, reduce it to REF, and the number of

nonzero rows is equal to the dimension, and nonzero rows constitutes a basis of it.

Example 2.1. We’ll find the dimension and basis of the image of the same linear function as

we considered in the previous example.

f(x, y, z, u) = (x + 2y − z + u, 2x + y + z + u, 4x + 5y − z + 3u).

We have:

• e1 = (1, 0, 0, 0) ⇒ f(e1) = (1, 2, 4)

• e2 = (0, 1, 0, 0) ⇒ f(e2) = (2, 1, 5)

• e3 = (0, 0, 1, 0) ⇒ f(e3) = (−1, 1,−1)

• e4 = (0, 0, 0, 1) ⇒ f(e4) = (1, 1, 3)

So, let’s write them as rows of a matrix and transpose it to REF:




1 2 4

2 1 5

−1 1 −1

1 1 3


 Ã




1 2 4

0 −3 −3

0 3 3

0 −1 −1


 Ã




1 2 4

0 −3 −3

0 0 0

0 0 0



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Now we see that the number of nonzero rows is 2 — it’s a dimension of the image, and its basis

consists of the following 2 vectors:

e1 = (1, 2, 4)

e2 = (0,−3,−3).

3 Extension to basis

Now we will jump back to vector spaces, and consider the following problem. Let’s suppose

that we have a vector space V , such that dim V = n, and we’re given m linearly independent

vectors, such that m < n. As we know, the basis of V consists of n vectors. So, our problem is

to find (n−m) vectors, such that these found vectors and given vectors together form a basis

of V .

To solve this problem we will use the following algorithm. Let’s take any basis of V (for

example, a standard basis). Then we will try to add vectors from it one by one to the given

set of vectors and see whether they together form an independent set. If yes, we keep it and

include it to the new basis, if no, we simply drop it. By the end of this procedure we will have

n vectors which form a basis.

Example 3.1. Consider the space R3. Let we have only one vector u1 = (4, 2, 0). We want to

find a basis containing this vector u1.

Consider the standard basis:

e1 =




1

0

0


 , e2 =




0

1

0


 , e3 =




0

0

1


 .

We’ll check vectors from it one by one.

Step 1. Vector e1. Let’s check whether u1 and e1 are linearly independent. Let’s make a

linear combination which is equal to 0.

x




4

2

0


 + y




1

0

0


 =




0

0

0


 .

We can write it as a system of linear equations:

{
4x + y = 0

2x = 0

This system has the unique solution x = 0, y = 0. So, these vectors are linearly independent

and we can add vector e1.
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Step 2. Vector e2. Let’s check whether vectors u1, e1 and e2 are linearly independent. Let’s

make a linear combination which is equal to 0.

x




4

2

0


 + y




1

0

0


 + z




0

1

0


 =




0

0

0


 .

We can write it as a system of linear equations:

{
4x + y = 0

2x + z = 0

This system is homogeneous system, in which the number of equations if less than the number

of variables. So, this system has nonzero solution, e.g. x = 1, y = −4, and z = −2 (we should

not really find it — it’s enough to know that it exists!!!). So, we drop the vector e2.

Step 3. Vector e3. It’s the last vector, and we should not even check if u1, e1 and e3 are

independent — we can just simply include it into the basis. But we’ll perform this check as an

example of determining linear independence. Let’s make a linear combination which is equal to

0.

x




4

2

0


 + y




1

0

0


 + z




0

0

1


 =




0

0

0


 .

We can write it as a system of linear equations:





4x + y = 0

2x = 0

z = 0

This system has unique zero solution, so these vectors are linearly independent.

Finally, we found a basis of R3, which contains the vector u1. It consists of vectors u1, e1

and e3:

u1 =




4

2

0


 , e1 =




1

0

0


 , e3 =




0

0

1


 .
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